Received 7 January 2008,

Revised 22 November 2008,

Accepted 13 December 2008

(www.interscience.wiley.com) DOI: 10.1002/jlcr.1580

Synthesis and radiolabelling of Re(CO)₃- β elemene derivatives as potential therapeutic radiopharmaceuticals

Yunfeng Ren,^{a,b} Yanhong Sun,^a Kangmin Cheng,^{a,b} Guifeng Liu,^{a,b} and Yumei Shen^{a*}

 β -Elemene, (15, 25, 4*R*)-(-)-(1-methy-1-vinyl-2,4-diisopropenyl cyclohexane) is an anticancer agent from the *Traditional Chinese Herb Medicinal*. Three novel Re(CO)₃- β -elemene derivatives including their radioactive conjugates containing *N*,*N*, *N* tridentate ligands and tricarbonyl rhenium (complex 12, 13, 14) were synthesized. Their structures were characterized by infrared (IR), ¹H-NMR and HRMS. Good radioactive yield (above 90%) and radioactive chemical purity with Re-188 (above 95%) were obtained for all of the three derivatives (complex 15, 16, 17). The antiproliferative activity of non-radioactive β -elemene-Re(CO)₃ derivatives on Lewis lung cancer cells and HeLa cell lines were evaluated by WST-1 methods. The result shows substantial decrease in IC₅₀ values compared with the parent compound β -elemene. The synthesis and radiosynthesis of β -elemene tricarbonyl rhenium conjugates provide the possibility to find a new kind of potential radiopharmaceuticals on β -elemene.

Keywords: β -elemene; tricarbonyl rhenium; Re-188; antiproliferative activity; IC₅₀

Introduction

 β -Elemene (Figure 1), (1*S*, 2*S*, 4*R*) 1-methy-1-vinyl-2,4-diisopropenyl cyclohexane, a natural sesquiterpene extracted from the *Traditional Chinese Herb Medicinal Curcuma wenyujin*¹and is the main effective monomer of elemene emulsion. β -Elemene exhibits anticancer effects in human and murine tumor cells *in vitro* and *in vivo* and has substantial clinical activity against various tumors without severe side effects.^{2–4} No bone marrow suppression and drug resistance have been observed in the clinical studies; on the contrary, patient immunity was improved during the therapy with β -elemene.

The nuclear properties of ¹⁸⁸Re [T_{1/2} 16.9 h; 2.12 MeV (71.6%) and 1.96 MeV (25.1%) β emissions, 155 KeV [(15%) γ emissions] would make it an ideal therapeutic radioisotopes. In this paper, we synthesized three novel Re(CO)3- β -elemene derivatives including their radioactive conjugates containing *N*,*N*,*N* tridentate ligands and tricarbonyl rhenium (complex **12**, **13**, **14**); The antiproliferative activity and structure characterization of nonradioactive β -elemene-Re(CO)3 derivatives were described; The radioactive yield and radioactive chemical purity with Re-188 were obtained for all of the three derivatives (complex **15**, **16**, **17**). It is an attempt to radiolabelling β -elemene derivatives for potential therapeutic radiopharmaceuticals.

Results and discussion

The synthesis procedure for the important intermediates was shown in Scheme 1, the compound **1** was prepared according to the literature⁵ with slight modification and careful control of reaction conditions in order to yield the 13-monosubstituted

 β -elemene chlorinated intermediate as the main product. The compound **2** was prepared similar to that of the reported procedure.⁶

Synthesis of various chelating systems with the spacer entities are presented in Schemes 2 and 3. We followed the recently published synthetic strategy⁷ for the preparation of tridentate chelating systems with spacer groups comprising a terminal, primary amine functionality. Chelators with spacer entities were prepared as follows: for the synthesis of chelator **5**, mono-Bocprotected diaminohexane **3** was treated with 2 equiv of pyridine-2-carboxaldehyde and a slight excess of sodium triacetoxy borohydride for *in situ* reduction of the imine intermediate followed by Boc-deprotection with 6 N HCI (Scheme 2). Compound **8** was synthesized with similar procedure to that of compound **5** starting from mono-Bocprotected 2, 2'-(ethylenedioxyl)diethylamine **6** (Scheme 3).

These intermediates including commercial available compound di-(2-picoyl)-amine were coupled to the β -elemene chlorinated compound **1** under basic conditions to form the corresponding intermediates **9**, **10**, **11** in very good yields.

*Correspondence to: Yumei Shen. Research Center of Radiopharmaceuticals, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 BaoJia Road, Shanghai 201800, China. E-mail: shenyumei@sinap.ac.cn

^aResearch Center of Radiopharmaceuticals, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 BaoJia Road, Shanghai 201800, China

^bGraduate School of the Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, China

The complex of $[N(CH_2CH_3)_4]_2[ReBr_3(CO)_3](2)$ was prepared according to a previously published procedure.^{6,8} This complex is an important starting material for compounds containing the *fac*-Re(CO)₃ moiety since the three bromide ligands are very weakly bound. When the[N(CH₂CH₃)₄]₂[ReBr₃(CO)₃] complex was dissolved in water, the three bromide ligands were quantitatively exchanged by three H₂O molecules to form the complex of *fac*-[Re(CO)₃(H₂O)₃]⁺, which is stable in aqueous solution even when exposed to air for weeks.

These substrates (9, 10, 11) are easy to coordinate with $[N(CH_2CH_3)_4]_2[ReBr_3(CO)_3]$ to afford the non-radioactive compounds 12, 13, 14 (Scheme 4). All the compounds were characterized by infrared (IR), ¹H-NMR, HRMS, HPLC or elemental analysis.

Figure 1. Chemical Structure of β -elemene.

Scheme 1. Reagents and conditions: (a)NaClO, CH_3COOH, CH_2Cl_2, 0°C; (b)N(Et)_4Br, CH_3OCH_2CH_2OCH_2CH_2OCH_3, 120°C.

The rhenium complexes with oxidation states+V/+III have a higher tendency to reoxidized. Therefore, kinetically more inert complexes containing rhenium in the low oxidation state+I have received more attention, recently^{9–11} *fac*-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺ may be an ideal candidate agent for labelling biomolecules. The kinetic inertness of the Re(+I) oxidation state opens a new way for exploring the more oxidation sensitive ¹⁸⁸Re for therapy.

Radiosynthesis of compounds **15**, **16**, **17** was performed at 70°C for 50 min with *fac*-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺ as starting material and the method is according to the published procedure.¹²⁻¹⁴ The complex of *fac*-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺ was synthesized with an overall radiochemical yield of 92%, and with a radiochemical purity of over 95% after a Sep-Pak[®] silica cartridge separation.

The ligand concentrations in the reactions were in $10^{-6}-10^{-4}$ M range. At these concentrations, labelling yields >90% in respect to *fac*-[¹⁸⁸Re(OH₂)₃(CO)₃]⁺ and specific activities of up to 200 GBq/µmol ligand (based on initial activity of 18 GBq/mL ¹⁸⁸ReO₄⁻) could be achieved (Scheme 5).

The formation of the ¹⁸⁸Re tricarbonyl complexes was monitored by RP-HPLC, and showed generally slightly shift to longer retention time (for **15**, R_f =21.21 min; for **16**, R_f =21.13 min; for **17**, R_f =21.19 min) compared with that of free precursor ¹⁸⁸Re(CO)₃Br (R_f =3.46 min) and β -elemene derivatives (for **12**, R_f =21.17 min; for **13**, R_f =20.07 min; for **14**, R_f =20.18 min) (Figure 2). Formation of small amount of by-product was observed in all of the three cases. The radioactive chemical purity of the compounds **15**, **16**, **17** were >95% after purified by HPLC. Stability of the Re-188 complexes was evaluated. The HPLC purified product showed no evidence of degradation in PBS or human plasma over a period of 24 h at 37°C.

The antiproliferative effect of non-radioactive $\text{Re}(\text{CO})_3$ - β -elemene derivatives in mice Lewis lung cancer cells (LLC) and human HeLa cervix carcinoma cells were evaluated by WST-1 method.¹⁵ MTT, WST-1 and XTT method could be used to detect the cell viability. WST-1, the tetrazolium salt 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (Beyotime), can form

Scheme 2. Reagents and conditions: (c) Boc₂O, CHCl₃, 0°C; (d) pyridine-2-carboxaldehyde, C₂H₄Cl₂, 2 h, rt; (CH₃COO)₃BHNa, rt; (e)HCl 6 N, rt, 3 h.

Scheme 3. Reagents and conditions: (f) Boc₂O, CHCl₃, 0°C; (g) pyridine-2-carboxaldehyde, C₂H₄Cl₂, 2 h, rt; (CH₃COO)₃BHNa, rt; (h) HCl 6 N, rt, 3 h.

Scheme 4. Reagents and conditions: (i) NaOH, CH₃CN, 63°C, 8 h; (ii) 5 or di-(2-picolyl)amine or 8; and (iii) 2 in CH₃OH, rt, 40 min.

Scheme 5. Radiosynthesis of complex 15, 16, 17.

water-soluble tetrazolium salts after incubated with active cells but not the MTT-formazan crystals. The results are shown in Table 1. Their antiproliferative activities of compound **12**, **13** and **14** were improved significantly in comparison to β -elemene (p < 0.01).

Octanol/water partition coefficient of β - elemene-¹⁸⁸Re(CO)₃

To evaluate the aqueous solubility of the complex, octanol/ water partition coefficient was determined. The results were shown in Table 2. Compared with that of β -elemene, which was reported as $P = 199.5 \pm 4.12$.¹⁶ The oil–water partition coefficients of β -elemene-¹⁸⁸Re(CO)₃(H₂O)₃⁺ complexes was improved more than 20 times than the parent β -elemene.

Experimental

Materials and instruments

 $\beta\text{-}\text{elemene}$ was obtained from WenTe Research Institute of Oleum Curcumae Wenchowensis in Yue Qing city, Zhejinag

Figure 2. HPLC analyses of the complex 12–14 and radioactive HPLC-traces of the ¹⁸⁸Re(CO)₃-β-elemene radiotracers 15–17.

Table 1. The antiproliferative activity of $\text{Re}(\text{CO})_3$ - β -elemene derivatives in LLC and HeLa cell lines			
	IC50	IC50(μM)	
Compounds	HeLa	LLC	
β-elemene Compound 12 Compound 13 Compound 14	$236.2 \pm 3.2 \\ 10.9 \pm 1.2 \\ 11.2 \pm 1.5 \\ 10.5 \pm 2.9$	$\begin{array}{r} 346.1 \pm 41.5 \\ 5.0 \pm 1.9 \\ 5.1 \pm 1.3 \\ 4.8 \pm 2.3 \end{array}$	

Table 2.	Oil-water partition coefficient of 12-14		
Complexes	Р	Log P	
Complex 1	2 11.50 ± 1.05	1.06 <u>+</u> 0.02	
Complex 1	3 13.20 ± 1.05	1.12 <u>+</u> 0.02	
Complex 1	4 9.48 ± 1.07	0.98 ± 0.03	

province (purity 98%). Other materials were purchased from Fluka Co. and Sinopharm Chemical Reagent Co. Ltd. The NMR data were obtained using a Bruker DRX 500 MHz FT

spectrometer. The chemical shifts as δ are reported in ppm relative to TMS. IR spectra were recorded on a Perkin-Elmer FT-IR spectrometer. Mass spectral data were collected using positive mode on a Finnigan LCQ classic mass spectrometer. Elemental analysis was performed using a Perkin-Elmer Series III analyser.

A general procedure for the formation of 13-chloro- β -elemene (compound 1)

To a solution of β -elemene (2 g, 9.79 mmol) in ice acetic acid (2 mL), sodium hypochlorite (13.5 mL) was added over 4 h period under stirring at ice cold, then the mixture was stirred for 2 h at room temperature and extracted with EtOAc. The combined organic extracts were washed with water, dried over anhydrous MgSO₄ and filtered. The filtrate was concentrated *in vacuo* to yield the mixture as yellow oil (2 g, 60%), which was used for the next step without further purification.

The procedure for the formation of $[N(CH_2CH_3)_4]_2[ReBr_3-(CO)_3]$ (compound 2)

Powdered N(Et)₄Br (158.2 mg) was stirred in 14 mL of 2,5,8-trioxanonane (diglyme) under dry argon and heated to 80°C. Then solid [ReBr(CO)₅] (118.2 mg) was added into the mixture and kept at 120°C for 8 h, during which a pale yellow precipitate

formed. The mixture was filtered while hot and washed with several portions of cold diglyme, diethyl ether and dried at 100° C in vacuum. The resulting pale yellow solid was then slurried in 3 mL absolute ethanol to remove unreacted NEt₄Br. Filtration and drying in vacuum yielded the product as a pale yellow powder (130 mg, 73%).

General procedure 17 for the formation of fac-[$^{188}\mbox{Re(CO)}_3$ $\left(\mbox{H}_2\mbox{O}\right)_3$] $^+$

Powdered $BH_3 \cdot NH_3$ (5.0 mg) was added into a 10 mL glass vial (flushed with N₂ for 10 min firstly). The vial was capped with a rubber stopper and an aluminum seal and then filled with CO gas for 20 min. The radiolabelling procedure was performed by adding a mixture of 6 µL of phosphoric acid (85%) and 1 mL of ¹⁸⁸ReO₄ (18 GBq/mL) into the vial and incubating in a water bath at 70–80°C for 15 min. A 10 mL syringe was used to keep the balance of H₂ gas. The chelating efficiency was determined by TLC, using a silica GF₂₅₄ glass plate as stationary phase and CH₃OH:HCl (36%) = 99:1 as mobile phase. In this system, colloidal ¹⁸⁸ReO₂ stays at the origin (R_f =0), the R_f of [¹⁸⁸Re(CO)₃(H₂O)₃]⁺ is 0.4–0.6, and the free ¹⁸⁸Re perrhenate has an R_f of 0.8–1.0. The yield of the product is better than 92%, and with a radiochemical purity of over 95% after a Sep-Pak[®] silica cartridge separation.

The antiproliferative evaluation by WST-1 method

LLC and HeLa cells were maintained in DMEM with 10% inactivated fetal bovine serum. The cell lines were grown in logarithmic growth at 37° C in a humidified atmosphere consisting of 5% CO₂ and 95% air. The cells were harvested using 0.25% trypsin-EDTA and seeded 5×10^3 cells in each well of a 96-well plate and incubated for 12 h. Then the Re(CO)₃- β -elemene derivatives and the parent compound β -elemene were added to wells of the plate at concentrations (100, 10, 1 µmol/L) and continued to culture in CO₂ incubator for 24 h. Ten microliter WST-1 solution was added to wells, absorbance values were taken using a 96-well Opsys Microplate Reader at 450 nm. IC₅₀ were calculated according to absorbance.

 IC_{50} were calculated with SPSS 11.5 statistical software, differences between mean values were analyzed with students' *t*-tests. Differences were considered significant when p < 0.01. Data are presented as mean \pm SD.

Partition coefficient study

Usually the final partition coefficient value was expressed as log *P*. Log *P* of β -elemene $-^{188}$ Re(CO)₃ was determined by measuring the distribution of radioactivity in 1-octanol and PBS. A 5 µL sample of \hat{a} -elemene- 188 Re(CO)₃ in PBS was added to a vial that contains 1 mL 1-octanol and 1 mL PBS. After vortexing for 5 min, the vial was centrifuged for 5 min to ensure complete separation of layers. Then, 5 µL of each layer was pipetted into other test tubes, and log *P* values were calculated using the formula: Log *P* = Log (counts in octanol/counts in water).¹⁸

Synthesis of compound 3

Compound **3** was synthesized according to a previously published procedure,¹⁹ starting from 1,6-diaminohexane. A colorless oil, 94% yield; ¹H NMR (CDCl₃, TMS, 500 MHz), δ : 1.30–1.37 (m, 4H), 1.40–1.51 (m, 11H), 1.60–1.68 (m, 4H, NH₂)

and CH₂), 2.68 (t, J=6.96 Hz, 2H), 3.11 (q, J=6.41 Hz, 2H), 4.59 (s, 1H); IR (KBr) v: 3344, 2925, 1699, 1527, 1174 cm⁻¹; EI-HRMS: calcd for C₁₁H₂₄N₂O₂ 216.1838, found 216.1808.

Synthesis of compound 4

Pyridine-2-carboxaldehyde (3.1018 g; 28.9 mmol; 2.1 equiv) dissolved in 40 mL of dry 1,2-dichloroethane was added to a solution of compound 3 (2.8778 g; 13.3 mmol; 1 equiv) in 50 mL of dry 1, 2dichloroethane and stirred for 2 h at room temperature. The reaction solution was cooled to 0°C before slow addition of sodium triacetoxy borohydride (6.1783 g; 29.1 mmol; 2.3 equiv) in portions. After 24h of stirring at room temperature, water was added to quench residual sodium triacetoxy borohydride and the reaction mixture extracted twice with CH₂Cl₂. The organic layer was extracted with water and brine, dried over Na₂SO₄, evaporated, and dried in a vacuum. A colorless oil, 75% yield; ¹H NMR (CDCl₃, TMS, 500 MHz), δ: 1.18–1.31 (m, 4H), 1.40–1.48 (m, 11H), 1.50–1.56 (m, 2H), 2.53 (t, J=7.20 Hz, 2H), 3.07 (d, J=6.22 Hz, 2H), 3.81 (s, 4H), 4.75 (s, 1H), 7.14 (t, J=5.75 Hz, 2H), 7.54 (d, J=7.582 Hz, 2H), 7.66 (dt, ¹J=7.67 Hz, ²J=1.71 Hz, 2H), 8.52 (d, J=4.77 Hz, 2H); IR (KBr) v: 3368, 3061, 2931, 1709, 1171, 760 cm⁻¹; EI-HRMS: calcd for C₂₃H₃₄N₄O₂ 398.2682, found 398.2679.

Synthesis of compound 5

The Boc-deprotection of compound **4** (692 mg, 1.73 mmol; 1 equiv) was achieved quantitatively in 6 N HCl (15 mL) after 4 h at room temperature as determined by TLC/ninhydrin. After addition of 10 N NaOH to obtain a pH value of 5, the reaction mixture was evaporated and dried in a vacuum. Methanol was added and the mixture was filtered to remove the precipitated salt colorless oil, 92% yield; ¹H NMR (CDCl3, TMS, 500 MHz), δ : 1.20–1.29 (m, 4H), 1.35–1.41 (m, 2H), 1.50–1.55 (m, 2H), 1.75 (s, 2H), 2.52 (t, *J* = 7.29, 2H), 2.62 (t, *J* = 7.06 Hz, 2H), 3.79 (s, 4H), 7.12 (t, *J* = 5.20 Hz, 2H), 7.52 (d, *J* = 7.80 Hz, 2H), 7.63 (dt, ¹*J* = 7.71 Hz, ²*J* = 1.66 Hz, 2H), 8.50 (d, *J* = 4.13 Hz, 2H); IR (KBr) *v*: 2924, 2028, 1917 cm⁻¹; EI-HRMS: calcd for C₁₈H₂₆N₄ 298.2157, found 298.2157.

Synthesis of compound 6

Compound **6** was synthesized with similar procedure to that of compound **3** starting from 2,2'-(ethylenedioxyl)diethylamine. A colorless oil, 92% yield; ¹H NMR (CDCI₃, TMS, 500 MHz), δ : 1.39 (s, 9H), 2.31–2.49 (m, 2H), 2.84 (s, 2H), 3.27 (s, 2H), 3.47–3.57 (m, 8H), 5.26 (s, 1H); IR (KBr) v: 584.3, 1708.9, 2972.9, 3342.6 cm⁻¹; ESI-HRMS: calcd for C₁₁H₂₅N₂O₄ 249.1814, found 249.1809.

Synthesis of compound 7

Compound **7** was synthesized with similar procedure to that of compound **4**. A colorless oil, 80% yield; ¹H NMR (CDCl₃, TMS, 500 MHz), δ : 1.39 (s, 9H), 2.45 (s, 1H), 2.86 (t, *J* = 5.60 Hz, 2H), 3.26–3.34 (m, 2H), 3.51–3.59 (m, 6H), 3.63 (t, *J* = 6.00 Hz, 2H), 3.93 (s, 4H), 7.15 (t, *J* = 5.60 Hz, 2H), 7.54 (d, *J* = 7.60 Hz, 2H), 7.65 (dt, ¹*J* = 7.60 Hz, ²*J* = 1.60 Hz, 2H), 8.53 (d, *J* = 4.40 Hz, 2H); IR (KBr) ν : 1364, 1701, 2358, 2931, 3499 cm⁻¹; EI-MS: calcd for C₂₃H₃₄N₄O₄ 430.3, found 430.4.

Synthesis of compound 8

Compound **8** was synthesized with similar procedure to that of compound **5**. A colorless oil, 87% yield; ¹H NMR (CDCl₃, TMS,

500 MHz), δ: 2.64 (s, 2H), 2.76–2.85 (m, 4H), 3.48–3.68 (m, 8H), 3.87 (s, 4H), 7.12 (t, J = 6.40 Hz, 2H), 7.51 (d, J = 7.60 Hz, 2H), 7.62 (dt, ¹J = 7.60 Hz, ²J = 1.60 Hz, 2H), 8.49 (d, J = 4.80 Hz, 2H); IR (KBr) v: 1858, 1999, 2987, 3458 cm⁻¹; ESI-HRMS: calcd for C₁₈H₂₇N₄O₂ 331.2134, found 331.2123.

General procedure for the preparation of compounds 9-11

A solution of Cl- β -elemene, (2 mmol), **5** or di-(2-picolyl)amine or **8** (4 mmol), and sodiun hydroxide (8 mmol) in 10 mL dry acetonitrile was refluxed for 8–10 h. Then water (10 mL) was added and the mixture was extracted with ethyl ether (4 × 30 mL). The comp-bined organic extracts were dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated *in vacuo*. The residue was purified on a silica gel column with dichloromethane-methanol as eluent to give a target product.

Compound 9

A brown oil, 80% yield; ¹H NMR (CDCl₃, TMS, 500 MHz), δ : 0.97 (s, 3H), 1.19–1.32 (m, 4H), 1.35–1.60 (m, 8H), 1.62–1.75 (m, 2H), 1.69 (s, 3H), 1.96–2.12 (m, 2H), 2.55 (t, *J*=6.88 Hz, 2H), 2.89 (t, *J*=7.78 Hz, 2H), 3.61 (s, 2H), 3.84 (s, 4H), 4.55 (s, 1H), 4.80 (s, 1H), 4.87–4.94 (m, 2H), 5.15 (s, 1H), 5.17 (s, 1H), 5.79 (dd, ¹*J*=17.71 Hz, ²*J*=10.54 Hz, 1H), 7.17 (t, *J*=5.6 Hz, 2H), 7.50 (d, *J*=7.79 Hz, 2H), 7.67 (dt, ¹*J*=7.67 Hz, ²*J*=1.64 Hz, 2H), 8.53 (d, *J*=4.19 Hz, 2H); IR (KBr) v: 2928, 2362, 1388 cm⁻¹; ESI-HRMS calcd for C₃₃H₄₉N₄ 501.3957, found 501.3922.

Compound 10

A brown oil, 87% yield; ¹H-NMR (CDCl₃, TMS, 500 MHz), δ : 0.90 (s, 3H), 1.47–1.27 (m, 6H), 1.61 (s, 3H), 1.92–1.89 (m, 1H), 2.07–2.04 (m, 1H), 3.06 (q, 2H, *J* = 14.0 Hz), 3.73 (q, *J* = 14.1 Hz, 4H), 4.47 (s, 1H), 4.73 (s, 1H), 4.84 (dd, *J* = 5.82 Hz, *J* = 1.08 Hz, 1H), 4.85 (d, *J* = 1.3 Hz, 1H), 4.89 (s, 1H), 5.06 (s, 1H), 5.77 (dd, *J* = 10.48 Hz, *J* = 7.38 Hz, 1H), 7.09–7.07 (m, H), 7.50–7.47 (m, H), 7.60 (dt, *J* = 7.65 Hz, *J* = 1.57 Hz, 2H), 8.45 (d, *J* = 4.3 Hz, 2H); IR (KBr): 3080, 1640 cm⁻¹; ¹³C-NMR (CDCl₃, TMS, 125 MHz), δ : 17.39, 25.31, 27.68, 33.73, 40.57, 40.74, 42.56, 53.74, 59.71, 60.80, 110.53, 111.63, 112.71, 122.62, 123.41, 137.10, 148.14, 149.61, 150.94, 152.06, 160.46; ESI-HRMS calcd for C₃₃H₄₉N₄ 401.2831, found 401.2842.

Compound 11

A brown oil, 81% yield; ¹H NMR (CDCl₃, TMS, 500 MHz), δ : 0.97 (s, 3H), 1.35–1.63 (m, 6H), 1.67 (s, 3H), 1.97–2.16 (m, 2H), 2.89 (s, 2H), 3.22 (t, J = 4.32 Hz, 2H), 3.46–3.51 (m, 2H), 3.57–3.65 (m, 4H), 3.69 (s, 2H), 3.81–3.95 (m, 6H), 4.54 (s, 1H), 4.80 (s, 1H), 4.86–4.94 (m, 2H), 5.18 (s, 1H), 5.32 (s, 1H), 5.78 (dd, ¹J = 17.85 Hz, ²J = 6.85 Hz, 1H),7.17 (t, J = 6.65 Hz, 2H), 7.38 (d, J = 7.45 Hz, 2H), 7.66 (t, J = 7.64 Hz, 2H), 8.55 (d, J = 3.97 Hz, 2H); IR (KBr) v: 765, 1591, 1639, 2928, 3371 cm⁻¹; ESI-HRMS calcd for C₃₃H₄₉N₄ O₂ 533.3856, found 533.3845.

General procedure for the preparation of compounds 12-14

Complexes **12–14** were prepared according to the following general procedure: 2 mmol $[N(CH_2CH_3)_4]_2[ReBr_3(CO)_3]$, and 2 mmol corresponding derivative (**9**, **10**, **11**) was dissolved in CH₃OH and stirred for 30 min. The mixture was evaporated and dried in a vacuum and the production was recrystallized with *n*-hexane: dichloromethane = 1:2

Compound 12

A white solid, 78% yield, m.p. $161.7-162.1^{\circ}C$; ¹H NMR (CDCl₃, TMS, 500 MHz), δ : 0.99 (s, 3H), 1.23–1.33 (m, 2H), 1.38–1.46 (m, 2H), 1.47–1.59 (m, 3H), 1.62–1.83 (m, 4H), 1.70 (s, 3H), 2.10–2.21 (m, 4H), 2.27–2.33 (m, 1H), 3.05 (t, *J*=7.16 Hz, 2H), 3.70 (q, *J*=14.00 Hz, 2H), 3.81 (t, *J*=8.08 Hz, 2H), 4.57 (s, 1H), 4.73 (d, *J*=16.75 Hz, 2H), 4.81 (s, 1H), 4.87–4.89 (m, 1H), 4.91 (s, 1H), 5.26 (s, 1H), 5.45 (s, 1H), 5.59 (d, *J*=17.02 Hz, 2H), 5.82 (dd, *J*=17.49 Hz, 10.85, 1H), 7.23 (t, *J*=6.71 Hz, 2H), 7.84 (dt, *J*=7.74 Hz, 0.38, 2H), 7.93 (d, *J*=7.81 Hz, 2H), 8.67 (d, *J*=5.4 Hz, 2H). IR (KBr) ν : 3472, 2926, 2027, 1912 cm⁻¹; anal. calcd for C₃₆H₄₈BrN₄O₃Re · CH₂Cl₂: C 47.49, H 5.39, N 5.99; found C 47.29, H 5.64, N 6.26.

Compound 13

A white solid, 82 % yield; ¹H-NMR (CDCI₃, TMS, 500 MHz), δ : 1.03 (s, 3H, CH₃), 1.51–1.58 (m, 3H), 1.68 (s, 3H, CH₃), 1.72–1.82 (m, 2H), 1.97–2.02 (m, 1H), 2.17–2.19 (m, 1H), 2.30–2.39 (m, 1H), 4.36–4.49 (m, 4H), 4.61 (s, 1H), 4.85 (s, 1H), 4.91–4.99 (m, 2H), 5.53 (s, 1H), 5.62 (s, 1H), 5.77–5.89 (q, 1H), 6.05 (q, J=18.53 Hz, 2H), 7.18 (t, J=6.39 Hz, 2H), 7.80 (t, J=7.63 Hz, 2H), 8.00 (d, J=7.64 Hz, 2H), 8.63 (d, J=5.34 Hz, 2H); IR (KBr): 3080, 2027, 1910 cm⁻¹;¹³C-NMR (CDCI₃, TMS, 125 MHz), δ : 17.23, 25.64, 28.00, 34.65, 40.44, 40.82, 44.52, 52.92, 67.78, 67.92, 74.48, 110.86, 113.00, 121.66, 125.85, 126.36, 140.96, 147.12, 148.02, 150.49, 151.07, 161.84, 161.95, 196.22, 196.86; anal. calcd for C₃₀H₃₆BrN₄O₃Re · CH₂Cl₂: C 46.99, H 4.73, N 7.31; found C 46.63, H 4.69, N 7.08.

Compound 14

A white solid, 75 % yield; ¹H NMR (CDCl₃, TMS, 500 MHz), δ : 1.00 (s, 3H), 1.38–1.47 (m, 2H), 1.48–1.61(m, 2H), 1.74 (s, 3H), 1.65–1.93 (m, 10H), 2.08–2.31(m, 6H), 3.01–3.09 (m, 2H), 3.62–3.74 (m, 2H), 3.76–3.85 (m, 2H), 4.58 (s, 1H), 4.73 (d, J = 16.80 Hz, 2H), 4.81 (s, 1H), 4.87 (s, 1H), 4.91 (d, J = 8.8 Hz, 1H), 5.27 (s, 1H), 5.48 (s, 1H), 5.64 (d, J = 16.80 Hz, 2H), 5.82 (dd, J = 17.49 Hz, 10.85, 1H), 7.23 (t, J = 6.80 Hz, 2H), 7.84 (t, J = 7.60 Hz, 2H), 7.95 (d, J = 7.60 Hz, 2H), 8.68 (d, J = 6.80 Hz, 2H). IR (KBr) v: 1914, 2028, 2928, 3437 cm⁻¹. Calcd for [C₃₆H₄₈N₄O₅Re]Br · 1/ 3CH₂Cl₂: C 47.89, H 5.38, N 6.15; found C 47.80, H 5.45, N 6.11.

Radiochemical synthesis of 15-17

Complexes **15–17** were prepared according to the following general procedure:^{17,20–22} *fac*-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺ was added to 100 μ L **9** or **10** or **11**(10⁻⁴ mol/L). The mixture was incubated at 70°C for 50 min. HPLC analyses of the complexes **15–17** revealed yields between 90 and 96%. Radioactive chemical purity with Re-188 (above 95%) was obtained for all of the three derivatives

Conclusion

Three novel β -elemene Re complexes have been prepared and characterized successfully. Their antiproliferative activity *in vitro* on LLC and HeLa cell lines were increased significantly compared with that of the parent β -elemene by WST-1 methods. The radiolabelling of these three β -elemene Re free derivatives with *fac*-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺ was straightforward and efficient. Their further biological evaluation for radioactive

target compounds *in vivo* is under way and will be reported in due course.

Acknowledgement

This project was supported by Hundred Talent Program of Chinese Academy of Sciences (No.26200601).

References

- [1] Y. T. Gao, X. Y. Wu, Y. L. Chen, Bull. Chin. Mater. Med. 1983, 8, 31–33.
- [2] G. Wang, X. Li, F. Huang, J. Zhao, H. Ding, C. Cunningham, J. E. Coad, D. C. Flynn, E. Reed, Q. Q. Li, *Cell. Mol. Life Sci.* 2005, *62*, 881–893.
- [3] X. Li, G. Wang, J. Zhao, H. Ding, C. Cunningham, F. Chen, D. C. Flynn, E. Reed, Q. Q. Li, *Cell. Mol. Life Sci.* **2005**, *62*, 894–904.
- [4] K. Wang, Z. Li, Y. Chen, C. Su, Biopharm. Drug Dispos. 2005, 26, 301–305.
- [5] L. Y. Xu, S. J. Tao, X. M. Wang, Z. Y. Yu, M. W. Wang, D. Chen, Y. K. Jing, J. H. Dong, *Bioorg. Med. Chem.* **2006**, *14*, 5351.
- [6] R. Alberto, A. Egli, U. Abrum *et al., J. Chem. Soc. Dalton Trans.***1994**, *19*, 2815–2880.
- [7] C. Muller, P. A. Schubiger, R. Schibli, *Bioconjug. Chem.* **2006**, *17*, 797-806.

- [8] J. Y. Xia, Y. X. Wang, J. F. Yu, J. Radioanal. Nucl. Chem. 2005, 266, 313–316.
- [9] M. Wenzel, M. J. Saidi, Labelled Compd. Radiopharm. 1993, 33, 77–80.
- [10] S. Top, P. Morel, M. Pankowski, G. Jaouen, J. Chem. Soc. Dalton Trans. 1996, 12, 3611–3612.
- [11] G. E. D. Mullen, P. J. Blowe et al., Inorg. Chem. 2000, 39, 4093–4098.
- [12] E. Palma, B. L. Oliveira, F. Figueira et al., J. Labelled Compd. Radiopharm. 2007, 50, 13–14.
- [13] R. Schibli, R. Alberto, J. Petrig *et al.*, *J. Labelled Compd. Radiopharm.* 2001, 44(Suppl 1), S723–S725.
- [14] R. Schibli, R. Schwarzbach, R. Alberto *et al.*, *Bioconjug. Chem.* 2002, 13, 750–756.
- [15] J. M. Worle-Knirsch, K. Pulskamp, H. F. Krug, Nano Lett. 2006, 6, 1261–1268.
- [16] X. M. Wang, Y. J. Deng et al., J. Shenyang Pharm. Univ. 2005, 22, 289–290.
- [17] H. P. Vanbilloen, K. Eraets, N. Evens et al., J. Labelled Compd. Raiopharm. 2005, 48, 1003–1011.
- [18] N. Pillarsetty, S. Cai, L. Ageyeva, R. D. Finn, R. G. Blasberg, J. Med. Chem. 2006, 49, 5377–5381.
- [19] J. F. Pons, J. L. Fauchere, F. Lamaty, A. Molla, R. Lazaro, Eur. J. Org. Chem. 1998, 5, 853–859.
- [20] A. Stichelberger, R. Waibel, C. Dumas et al., Nucl. Med. Bio. 2003, 30, 465–470.
- [21] H. J. Pietzsch, A. Gupta, M. Reisgys et al., Bioconjug. Chem. 2000, 11, 414–424.
- [22] S. H. Park, H. J. Gwon, K. B. Park, J. Labelled Compd. Raiopharm. 2004, 47, 683–697.