Synthesis and radiolabelling of $\operatorname{Re}\left(\mathrm{CO}_{3}-\beta\right.$ elemene derivatives as potential therapeutic radiopharmaceuticals

Yunfeng Ren, ${ }^{\text {a,b }}$ Yanhong Sun, ${ }^{\text {a }}$ Kangmin Cheng, ${ }^{\text {a,b }}$ Guifeng Liu, ${ }^{\text {a,b }}$ and Yumei Shen ${ }^{\text {a* }}$

Abstract

β-Elemene, (1S, 2S, 4R)-(-)-(1-methy-1-vinyl-2,4-diisopropenyl cyclohexane) is an anticancer agent from the Traditional Chinese Herb Medicinal. Three novel $\operatorname{Re}(C O)_{3}-\beta$-elemene derivatives including their radioactive conjugates containing N, N, N tridentate ligands and tricarbonyl rhenium (complex 12, 13, 14) were synthesized. Their structures were characterized by infrared (IR), ${ }^{1} \mathrm{H}$-NMR and HRMS. Good radioactive yield (above 90%) and radioactive chemical purity with Re-188 (above 95%) were obtained for all of the three derivatives (complex 15, 16, 17). The antiproliferative activity of non-radioactive β-elemene-Re(CO) ${ }_{3}$ derivatives on Lewis lung cancer cells and HeLa cell lines were evaluated by WST-1 methods. The result shows substantial decrease in IC_{50} values compared with the parent compound β-elemene. The synthesis and radiosynthesis of β-elemene tricarbonyl rhenium conjugates provide the possibility to find a new kind of potential radiopharmaceuticals on β-elemene.

Keywords: β-elemene; tricarbonyl rhenium; Re-188; antiproliferative activity; IC_{50}

Introduction

β-Elemene (Figure 1), (1S, 2S, 4R) 1-methy-1-vinyl-2,4-diisopropenyl cyclohexane, a natural sesquiterpene extracted from the Traditional Chinese Herb Medicinal Curcuma wenyujin ${ }^{1}$ and is the main effective monomer of elemene emulsion. β-Elemene exhibits anticancer effects in human and murine tumor cells in vitro and in vivo and has substantial clinical activity against various tumors without severe side effects. ${ }^{2-4}$ No bone marrow suppression and drug resistance have been observed in the clinical studies; on the contrary, patient immunity was improved during the therapy with β-elemene.

The nuclear properties of ${ }^{188} \mathrm{Re}\left[T_{1 / 2} 16.9 \mathrm{~h} ; 2.12 \mathrm{MeV}\right.$ (71.6\%) and 1.96 MeV (25.1\%) β emissions, 155 KeV [(15\%) γ emissions] would make it an ideal therapeutic radioisotopes. In this paper, we synthesized three novel $\operatorname{Re}(\mathrm{CO}) 3-\beta$-elemene derivatives including their radioactive conjugates containing N, N, N tridentate ligands and tricarbonyl rhenium (complex 12, 13, 14); The antiproliferative activity and structure characterization of nonradioactive β-elemene-Re(CO)3 derivatives were described; The radioactive yield and radioactive chemical purity with Re-188 were obtained for all of the three derivatives (complex 15, 16, 17). It is an attempt to radiolabelling β-elemene derivatives for potential therapeutic radiopharmaceuticals.

Results and discussion

The synthesis procedure for the important intermediates was shown in Scheme 1, the compound 1 was prepared according to the literature ${ }^{5}$ with slight modification and careful control of reaction conditions in order to yield the 13-monosubstituted
β-elemene chlorinated intermediate as the main product. The compound 2 was prepared similar to that of the reported procedure. ${ }^{6}$

Synthesis of various chelating systems with the spacer entities are presented in Schemes 2 and 3. We followed the recently published synthetic strategy ${ }^{7}$ for the preparation of tridentate chelating systems with spacer groups comprising a terminal, primary amine functionality. Chelators with spacer entities were prepared as follows: for the synthesis of chelator 5, mono-Bocprotected diaminohexane $\mathbf{3}$ was treated with 2 equiv of pyridine-2-carboxaldehyde and a slight excess of sodium triacetoxy borohydride for in situ reduction of the imine intermediate followed by Boc-deprotection with 6 N HCl (Scheme 2). Compound 8 was synthesized with similar procedure to that of compound 5 starting from mono-Bocprotected 2, 2'-(ethylenedioxyl)diethylamine 6 (Scheme 3).

These intermediates including commercial available compound di-(2-picoyl)-amine were coupled to the β-elemene chlorinated compound 1 under basic conditions to form the corresponding intermediates $\mathbf{9 , 1 0 , 1 1}$ in very good yields.

[^0]The complex of $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\operatorname{ReBr}_{3}(\mathrm{CO})_{3}\right](\mathbf{2})$ was prepared according to a previously published procedure. ${ }^{6,8}$ This complex is an important starting material for compounds containing the fac-Re(CO) ${ }_{3}$ moiety since the three bromide ligands are very weakly bound. When the $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\mathrm{ReBr}_{3}(\mathrm{CO})_{3}\right]$ complex was dissolved in water, the three bromide ligands were quantitatively exchanged by three $\mathrm{H}_{2} \mathrm{O}$ molecules to form the complex of fac-[Re(CO) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$, which is stable in aqueous solution even when exposed to air for weeks.

These substrates $(\mathbf{9}, \mathbf{1 0}, \mathbf{1 1)}$ are easy to coordinate with $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\mathrm{ReBr}_{3}(\mathrm{CO})_{3}\right]$ to afford the non-radioactive compounds 12, 13, 14 (Scheme 4). All the compounds were characterized by infrared (IR), ${ }^{1} \mathrm{H}-\mathrm{NMR}$, HRMS, HPLC or elemental analysis.

Figure 1. Chemical Structure of β-elemene.

Scheme 1. Reagents and conditions: (a) $\mathrm{NaClO}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}$; (b)N(Et) ${ }_{4} \mathrm{Br}$, $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}, 120^{\circ} \mathrm{C}$.

The rhenium complexes with oxidation states $+\mathrm{V} /+$ III have a higher tendency to reoxidized. Therefore, kinetically more inert complexes containing rhenium in the low oxidation state +1 have received more attention, recently ${ }^{9-11}$ fac- $\left[{ }^{188} \mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$may be an ideal candidate agent for labelling biomolecules. The kinetic inertness of the $\operatorname{Re}(+\mathrm{I})$ oxidation state opens a new way for exploring the more oxidation sensitive ${ }^{188} \mathrm{Re}$ for therapy.
Radiosynthesis of compounds 15, 16, 17 was performed at $70^{\circ} \mathrm{C}$ for 50 min with fac- $\left[{ }^{188} \mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$as starting material and the method is according to the published procedure. ${ }^{12-14}$ The complex of fac-[$\left.{ }^{188} \mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$was synthesized with an overall radiochemical yield of 92%, and with a radiochemical purity of over 95% after a Sep-Pak ${ }^{\circledR}$ silica cartridge separation.
The ligand concentrations in the reactions were in $10^{-6}-10^{-4} \mathrm{M}$ range. At these concentrations, labelling yields $>90 \%$ in respect to fac-[$\left.{ }^{188} \mathrm{Re}\left(\mathrm{OH}_{2}\right)_{3}(\mathrm{CO})_{3}\right]^{+}$and specific activities of up to $200 \mathrm{GBq} / \mu \mathrm{mol}$ ligand (based on initial activity of $18 \mathrm{GBq} / \mathrm{mL}^{188} \mathrm{ReO}_{4}^{-}$) could be achieved (Scheme 5).
The formation of the ${ }^{188} \mathrm{Re}$ tricarbonyl complexes was monitored by RP-HPLC, and showed generally slightly shift to longer retention time (for $\mathbf{1 5}, R_{\mathrm{f}}=21.21 \mathrm{~min}$; for $\mathbf{1 6}, R_{\mathrm{f}}=21.13 \mathrm{~min}$; for 17, $R_{\mathrm{f}}=21.19 \mathrm{~min}$) compared with that of free precursor ${ }^{188} \operatorname{Re}(\mathrm{CO})_{3} \mathrm{Br}\left(R_{\mathrm{f}}=3.46 \mathrm{~min}\right)$ and β-elemene derivatives (for 12, $R_{\mathrm{f}}=21.17 \mathrm{~min} ;$ for $13, R_{\mathrm{f}}=20.07 \mathrm{~min}$; for $14, R_{\mathrm{f}}=20.18 \mathrm{~min}$) (Figure 2). Formation of small amount of by-product was observed in all of the three cases. The radioactive chemical purity of the compounds 15, 16, 17 were $>95 \%$ after purified by HPLC. Stability of the Re-188 complexes was evaluated. The HPLC purified product showed no evidence of degradation in PBS or human plasma over a period of 24 h at $37^{\circ} \mathrm{C}$.
The antiproliferative effect of non-radioactive $\operatorname{Re}(\mathrm{CO})_{3}-\beta$-elemene derivatives in mice Lewis lung cancer cells (LLC) and human HeLa cervix carcinoma cells were evaluated by WST-1 method. ${ }^{15}$ MTT, WST-1 and XTT method could be used to detect the cell viability. WST-1, the tetrazolium salt 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (Beyotime), can form

Scheme 2. Reagents and conditions: (c) $\mathrm{BoC}_{2} \mathrm{O}, \mathrm{CHCl}_{3}, \mathrm{O}^{\circ} \mathrm{C}$; (d) pyridine-2-carboxaldehyde, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}, 2 \mathrm{~h}, \mathrm{rt}$; $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{BHNa}, \mathrm{rt}$; (e) $\mathrm{HCl} 6 \mathrm{~N}, \mathrm{rt}, 3 \mathrm{~h}$.

Scheme 3. Reagents and conditions: (f) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{CHCl}_{3}, \mathrm{O}^{\circ} \mathrm{C}$; (g) pyridine-2-carboxaldehyde, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}, 2 \mathrm{~h}$, rt; $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{BHNa}$, rt ; (h) $\mathrm{HCl} 6 \mathrm{~N}, \mathrm{rt}, 3 \mathrm{~h}$.

Scheme 4. Reagents and conditions: (i) $\mathrm{NaOH}, \mathrm{CH}_{3} \mathrm{CN}, 63^{\circ} \mathrm{C}, 8 \mathrm{~h}$; (ii) $\mathbf{5}$ or di-(2-picolyl)amine or 8; and (iii) $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$, rt, 40 min .

Scheme 5. Radiosynthesis of complex 15, 16, 17.
water-soluble tetrazolium salts after incubated with active cells but not the MTT-formazan crystals. The results are shown in Table 1. Their antiproliferative activities of compound 12, 13 and 14 were improved significantly in comparison to β-elemene ($p<0.01$).

Octanol/water partition coefficient of β - elemene- ${ }^{188} \operatorname{Re}(\mathrm{CO})_{\mathbf{3}}$
To evaluate the aqueous solubility of the complex, octanol/ water partition coefficient was determined. The results were shown in Table 2. Compared with that of β-elemene, which was
reported as $P=199.5 \pm 4.12 .{ }^{16}$ The oil-water partition coefficients of β-elemene- ${ }^{188} \mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}^{+}$complexes was improved more than 20 times than the parent β-elemene.

Experimental

Materials and instruments

β-elemene was obtained from WenTe Research Institute of Oleum Curcumae Wenchowensis in Yue Qing city, Zhejinag

Figure 2. HPLC analyses of the complex 12-14 and radioactive HPLC-traces of the ${ }^{188} \operatorname{Re}(\mathrm{CO})_{3}-\beta$-elemene radiotracers 15-17.

Table 1. The antiproliferative activity of $\operatorname{Re}(\mathrm{CO})_{3}-\beta$-elemene derivatives in LLC and HeLa cell lines

	$\mathrm{IC} 50(\mu \mathrm{M})$	
Compounds	HeLa	LLC
β-elemene	236.2 ± 3.2	346.1 ± 41.5
Compound 12	10.9 ± 1.2	5.0 ± 1.9
Compound 13	11.2 ± 1.5	5.1 ± 1.3
Compound 14	10.5 ± 2.9	4.8 ± 2.3

Table 2. Oil-water partition coefficient of 12-14		
Complexes	P	Log P
Complex 12	11.50 ± 1.05	1.06 ± 0.02
Complex 13	13.20 ± 1.05	1.12 ± 0.02
Complex 14	9.48 ± 1.07	0.98 ± 0.03

province (purity 98\%). Other materials were purchased from Fluka Co. and Sinopharm Chemical Reagent Co. Ltd. The NMR data were obtained using a Bruker DRX 500 MHz FT
spectrometer. The chemical shifts as δ are reported in ppm relative to TMS. IR spectra were recorded on a Perkin-Elmer FT-IR spectrometer. Mass spectral data were collected using positive mode on a Finnigan LCQ classic mass spectrometer. Elemental analysis was performed using a Perkin-Elmer Series III analyser.

A general procedure for the formation of 13-chloro- β elemene (compound 1)

To a solution of β-elemene ($2 \mathrm{~g}, 9.79 \mathrm{mmol}$) in ice acetic acid $(2 \mathrm{~mL})$, sodium hypochlorite (13.5 mL) was added over 4 h period under stirring at ice cold, then the mixture was stirred for 2 h at room temperature and extracted with EtOAc. The combined organic extracts were washed with water, dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated in vacuo to yield the mixture as yellow oil ($2 \mathrm{~g}, 60 \%$), which was used for the next step without further purification.

The procedure for the formation of $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\mathrm{ReBr}_{3}{ }^{-}\right.$ $(\mathrm{CO})_{3}$] (compound 2)

Powdered $\mathrm{N}(\mathrm{Et})_{4} \mathrm{Br}(158.2 \mathrm{mg})$ was stirred in 14 mL of $2,5,8-$ trioxanonane (diglyme) under dry argon and heated to $80^{\circ} \mathrm{C}$. Then solid $\left[\operatorname{ReBr}(\mathrm{CO})_{5}\right](118.2 \mathrm{mg})$ was added into the mixture and kept at $120^{\circ} \mathrm{C}$ for 8 h , during which a pale yellow precipitate
formed. The mixture was filtered while hot and washed with several portions of cold diglyme, diethyl ether and dried at $100^{\circ} \mathrm{C}$ in vacuum. The resulting pale yellow solid was then slurried in 3 mL absolute ethanol to remove unreacted $\mathrm{NEt}_{4} \mathrm{Br}$. Filtration and drying in vacuum yielded the product as a pale yellow powder ($130 \mathrm{mg}, 73 \%$).

General procedure ${ }^{17}$ for the formation of fac-[${ }^{188} \mathrm{Re}(\mathrm{CO})_{3}$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$

Powdered $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(5.0 \mathrm{mg})$ was added into a 10 mL glass vial (flushed with N_{2} for 10 min firstly). The vial was capped with a rubber stopper and an aluminum seal and then filled with CO gas for 20 min . The radiolabelling procedure was performed by adding a mixture of $6 \mu \mathrm{~L}$ of phosphoric acid (85%) and 1 mL of ${ }^{188} \mathrm{ReO}_{4}(18 \mathrm{GBq} / \mathrm{mL})$ into the vial and incubating in a water bath at $70-80^{\circ} \mathrm{C}$ for 15 min . A 10 mL syringe was used to keep the balance of H_{2} gas. The chelating efficiency was determined by TLC, using a silica GF_{254} glass plate as stationary phase and $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{HCl}(36 \%)=99: 1$ as mobile phase. In this system, colloidal ${ }^{188} \mathrm{ReO}_{2}$ stays at the origin ($R_{\mathrm{f}}=0$), the R_{f} of $\left[{ }^{188} \mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$ is $0.4-0.6$, and the free ${ }^{188}$ Re perrhenate has an R_{f} of $0.8-1.0$. The yield of the product is better than 92%, and with a radiochemical purity of over 95% after a Sep-Pak ${ }^{\circledR}$ silica cartridge separation.

The antiproliferative evaluation by WST-1 method

LLC and HeLa cells were maintained in DMEM with 10% inactivated fetal bovine serum. The cell lines were grown in logarithmic growth at $37^{\circ} \mathrm{C}$ in a humidified atmosphere consisting of $5 \% \mathrm{CO}_{2}$ and 95% air. The cells were harvested using 0.25% trypsin-EDTA and seeded 5×10^{3} cells in each well of a 96 -well plate and incubated for 12 h . Then the $\operatorname{Re}(\mathrm{CO})_{3}-\beta$ elemene derivatives and the parent compound β-elemene were added to wells of the plate at concentrations ($100,10,1 \mu \mathrm{~mol} / \mathrm{L}$) and continued to culture in CO_{2} incubator for 24 h . Ten microliter WST-1 solution was added to wells, absorbance values were taken using a 96 -well Opsys Microplate Reader at 450 nm . IC_{50} were calculated according to absorbance.
IC_{50} were calculated with SPSS 11.5 statistical software, differences between mean values were analyzed with students' t-tests. Differences were considered significant when $p<0.01$. Data are presented as mean \pm SD.

Partition coefficient study

Usually the final partition coefficient value was expressed as $\log P$. Log P of β-elemene $-{ }^{188} \operatorname{Re}(C O)_{3}$ was determined by measuring the distribution of radioactivity in 1-octanol and PBS. A $5 \mu \mathrm{~L}$ sample of \hat{a}-elemene- $-{ }^{188} \mathrm{Re}(\mathrm{CO})_{3}$ in PBS was added to a vial that contains 1 mL 1 -octanol and 1 mL PBS. After vortexing for 5 min , the vial was centrifuged for 5 min to ensure complete separation of layers. Then, $5 \mu \mathrm{~L}$ of each layer was pipetted into other test tubes, and $\log P$ values were calculated using the formula: $\log P=\log$ (counts in octanol/counts in water). ${ }^{18}$

Synthesis of compound 3

Compound 3 was synthesized according to a previously published procedure, ${ }^{19}$ starting from 1,6-diaminohexane. A colorless oil, 94% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 500 \mathrm{MHz}\right)$, $\delta: 1.30-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.51(\mathrm{~m}, 11 \mathrm{H}), 1.60-1.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}_{2}\right.$
and $\left.C H_{2}\right), 2.68(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{q}, J=6.41 \mathrm{~Hz}, 2 \mathrm{H}), 4.59$ (s, 1H); IR (KBr) v: 3344, 2925, 1699, 1527, $1174 \mathrm{~cm}^{-1}$; El-HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ 216.1838, found 216.1808.

Synthesis of compound 4

Pyridine-2-carboxaldehyde ($3.1018 \mathrm{~g} ; 28.9 \mathrm{mmol} ; 2.1$ equiv) dissolved in 40 mL of dry 1,2 -dichloroethane was added to a solution of compound 3 ($2.8778 \mathrm{~g} ; 13.3 \mathrm{mmol}$; 1 equiv) in 50 mL of dry $1,2-$ dichloroethane and stirred for 2 h at room temperature. The reaction solution was cooled to $0^{\circ} \mathrm{C}$ before slow addition of sodium triacetoxy borohydride ($6.1783 \mathrm{~g} ; 29.1 \mathrm{mmol} ; 2.3$ equiv) in portions. After 24 h of stirring at room temperature, water was added to quench residual sodium triacetoxy borohydride and the reaction mixture extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was extracted with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and dried in a vacuum. A colorless oil, 75% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 500 \mathrm{MHz}\right), \delta: 1.18-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.48$ $(\mathrm{m}, ~ 11 \mathrm{H}), 1.50-1.56(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.07$ (d, $J=6.22 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 4 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=5.75 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.582 \mathrm{~Hz}, 2 \mathrm{H}), 7.66\left(\mathrm{dt},{ }^{1} J=7.67 \mathrm{~Hz},{ }^{2} J=1.71 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 8.52(\mathrm{~d}, J=4.77 \mathrm{~Hz}, 2 \mathrm{H})$; IR (KBr) v: 3368, 3061, 2931, 1709, 1171, $760 \mathrm{~cm}^{-1}$; El-HRMS: calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{2} 398.2682$, found 398.2679.

Synthesis of compound 5

The Boc-deprotection of compound 4 ($692 \mathrm{mg}, 1.73 \mathrm{mmol}$; 1 equiv) was achieved quantitatively in $6 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ after 4 h at room temperature as determined by TLC/ninhydrin. After addition of 10 N NaOH to obtain a pH value of 5 , the reaction mixture was evaporated and dried in a vacuum. Methanol was added and the mixture was filtered to remove the precipitated salt colorless oil, 92% yield; ${ }^{1} \mathrm{H}$ NMR (CDCI3, TMS, 500 MHz), $\delta: 1.20-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.75$ $(\mathrm{s}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.29,2 \mathrm{H}), 2.62(\mathrm{t}, J=7.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 4 \mathrm{H}), 7.12$ (t, J=5.20 Hz, 2H), 7.52 (d, $J=7.80 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (dt, ${ }^{1} J=7.71 \mathrm{~Hz}$, $\left.{ }^{2} J=1.66 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.50(\mathrm{~d}, J=4.13 \mathrm{~Hz}, 2 \mathrm{H})$; IR (KBr) $v: 2924,2028$, $1917 \mathrm{~cm}^{-1}$; El-HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4}$ 298.2157, found 298.2157.

Synthesis of compound 6

Compound 6 was synthesized with similar procedure to that of compound 3 starting from 2,2'-(ethylenedioxyl)diethylamine. A colorless oil, 92% yield; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 500 \mathrm{MHz}\right), \delta: 1.39$ $(\mathrm{s}, 9 \mathrm{H}), 2.31-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 3.47-3.57$ (m, 8H), 5.26 ($\mathrm{s}, 1 \mathrm{H}$); IR (KBr) v: $584.3,1708.9,2972.9,3342.6 \mathrm{~cm}^{-1}$; ESI-HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}$ 249.1814, found 249.1809.

Synthesis of compound 7

Compound $\mathbf{7}$ was synthesized with similar procedure to that of compound 4. A colorless oil, 80\% yield; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{TMS}$, $500 \mathrm{MHz}), \delta: 1.39(\mathrm{~s}, 9 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=5.60 \mathrm{~Hz}, 2 \mathrm{H})$, $3.26-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 6 \mathrm{H}), 3.63(\mathrm{t}, J=6.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.93$ $(\mathrm{s}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=5.60 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dt}$, $\left.{ }^{1} J=7.60 \mathrm{~Hz},{ }^{2} J=1.60 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.53(\mathrm{~d}, J=4.40 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{IR}(\mathrm{KBr})$ v : 1364, 1701, 2358, 2931, $3499 \mathrm{~cm}^{-1}$; El-MS: calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4} 430.3$, found 430.4.

Synthesis of compound 8

Compound 8 was synthesized with similar procedure to that of compound 5. A colorless oil, 87% yield; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{TMS}$,
$500 \mathrm{MHz}), \delta: 2.64(\mathrm{~s}, 2 \mathrm{H}), 2.76-2.85(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.68(\mathrm{~m}, 8 \mathrm{H})$, $3.87(\mathrm{~s}, 4 \mathrm{H}), 7.12(\mathrm{t}, J=6.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$ (dt, ${ }^{1} J=7.60 \mathrm{~Hz},{ }^{2} J=1.60 \mathrm{~Hz}, 2 \mathrm{H}$), 8.49 (d, $J=4.80 \mathrm{~Hz}, 2 \mathrm{H}$); IR (KBr) v: 1858, 1999, 2987, $3458 \mathrm{~cm}^{-1}$; ESI-HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2}$ 331.2134, found 331.2123.

General procedure for the preparation of compounds 9-11

A solution of Cl - β-elemene, (2 mmol), $\mathbf{5}$ or di-(2-picolyl)amine or 8 (4 mmol), and sodiun hydroxide (8 mmol) in 10 mL dry acetonitrile was refluxed for $8-10 \mathrm{~h}$. Then water (10 mL) was added and the mixture was extracted with ethyl ether $(4 \times 30 \mathrm{~mL})$. The comp-bined organic extracts were dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo. The residue was purified on a silica gel column with dichloromethane-methanol as eluent to give a target product.

Compound 9

A brown oil, 80% yield; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{TMS}, 500 \mathrm{MHz}$), $\delta: 0.97$ (s, 3H), 1.19-1.32 (m, 4H), 1.35-1.60 (m, 8H), 1.62-1.75 (m, 2H), 1.69 $(\mathrm{s}, 3 \mathrm{H}), 1.96-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}$, $J=7.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H})$, $4.87-4.94(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.79\left(\mathrm{dd},{ }^{1} \mathrm{~J}=17.71 \mathrm{~Hz}\right.$, $\left.{ }^{2} J=10.54 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.17(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.79 \mathrm{~Hz}, 2 \mathrm{H})$, 7.67 (dt, $\left.{ }^{1} J=7.67 \mathrm{~Hz},{ }^{2} J=1.64 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.53(\mathrm{~d}, J=4.19 \mathrm{~Hz}, 2 \mathrm{H})$; IR (KBr) v: 2928, 2362, $1388 \mathrm{~cm}^{-1}$; ESI-HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~N}_{4}$ 501.3957, found 501.3922.

Compound 10

A brown oil, 87% yield; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 500 \mathrm{MHz}\right), \delta: 0.90(\mathrm{~s}$, $3 \mathrm{H}), 1.47-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.04$ $(\mathrm{m}, 1 \mathrm{H}), 3.06(\mathrm{q}, 2 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.73(\mathrm{q}, J=14.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.47(\mathrm{~s}$, $1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=5.82 \mathrm{~Hz}, J=1.08 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ (d, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=10.48 \mathrm{~Hz}$, $J=7.38 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.07(\mathrm{~m}, \mathrm{H}), 7.50-7.47(\mathrm{~m}, \mathrm{H}), 7.60(\mathrm{dt}$, $J=7.65 \mathrm{~Hz}, J=1.57 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H})$; IR (KBr): 3080 , $1640 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 125 \mathrm{MHz}\right), \delta: 17.39,25.31,27.68$, 33.73, 40.57, 40.74, 42.56, 53.74, 59.71, 60.80, 110.53, 111.63, 112.71, 122.62, 123.41, 137.10, 148.14, 149.61, 150.94, 152.06, 160.46; ESI-HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~N}_{4} 401.2831$, found 401.2842.

Compound 11

A brown oil, 81% yield; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 500 \mathrm{MHz}\right), \delta: 0.97$ (s, $3 \mathrm{H}), 1.35-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.97-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H})$, $3.22(\mathrm{t}, \mathrm{J}=4.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.69$ $(\mathrm{s}, 2 \mathrm{H}), 3.81-3.95(\mathrm{~m}, 6 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.86-4.94(\mathrm{~m}$, $2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.78\left(\mathrm{dd},{ }^{1} \mathrm{~J}=17.85 \mathrm{~Hz},{ }^{2} \mathrm{~J}=6.85 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.17(\mathrm{t}, J=6.65 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.45 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}$, $J=7.64 \mathrm{~Hz}, 2 \mathrm{H}), 8.55(\mathrm{~d}, J=3.97 \mathrm{~Hz}, 2 \mathrm{H})$; IR (KBr) v: 765, 1591, 1639, 2928, $3371 \mathrm{~cm}^{-1}$; ESI-HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{2}$ 533.3856, found 533.3845.

General procedure for the preparation of compounds 12-14

Complexes 12-14 were prepared according to the following general procedure: $2 \mathrm{mmol}\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\mathrm{ReBr}_{3}(\mathrm{CO})_{3}\right]$, and 2 mmol corresponding derivative ($\mathbf{9}, \mathbf{1 0}, \mathbf{1 1}$) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ and stirred for 30 min . The mixture was evaporated and dried in a vacuum and the production was recrystallized with n-hexane: dichloromethane $=1: 2$

Compound 12

A white solid, 78% yield, m.p. $161.7-162.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 500 MHz$), \delta: 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.46(\mathrm{~m}$, $2 \mathrm{H}), 1.47-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.21$ $(\mathrm{m}, 4 \mathrm{H}), 2.27-2.33(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=7.16 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{q}$, $J=14.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=8.08 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}$, $J=16.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.87-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 5.26$ $(\mathrm{s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=17.02 \mathrm{~Hz}, 2 \mathrm{H}), 5.82$ (dd, $J=17.49 \mathrm{~Hz}, 10.85,1 \mathrm{H}), 7.23(\mathrm{t}, J=6.71 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dt}$, $J=7.74 \mathrm{~Hz}, 0.38,2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.81 \mathrm{~Hz}, 2 \mathrm{H}), 8.67(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, 2H). IR (KBr) v: 3472, 2926, 2027, $1912 \mathrm{~cm}^{-1}$; anal. calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{BrN}_{4} \mathrm{O}_{3} \mathrm{Re} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C 47.49, H 5.39, N 5.99; found C 47.29, H 5.64, N 6.26.

Compound 13

A white solid, 82% yield; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 500 \mathrm{MHz}\right), \delta: 1.03$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.51-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.72-1.82(\mathrm{~m}$, 2H), 1.97-2.02 (m, 1H), 2.17-2.19 (m, 1H), 2.30-2.39 (m, 1H), 4.36-4.49 (m, 4H), 4.61 ($\mathrm{s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.91-4.99(\mathrm{~m}, 2 \mathrm{H})$, $5.53(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.77-5.89(\mathrm{q}, 1 \mathrm{H}), 6.05(\mathrm{q}, J=18.53 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18(\mathrm{t}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{t}, J=7.63 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}$, $J=7.64 \mathrm{~Hz}, 2 \mathrm{H}$), 8.63 ($\mathrm{d}, J=5.34 \mathrm{~Hz}, 2 \mathrm{H}$); IR (KBr): 3080,2027 , $1910 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 125 \mathrm{MHz}\right), \delta: 17.23,25.64$, 28.00, 34.65, 40.44, 40.82, 44.52, 52.92, 67.78, 67.92, 74.48, $110.86,113.00,121.66,125.85,126.36,140.96,147.12,148.02$, 150.49, 151.07, 161.84, 161.95, 196.22, 196.86; anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{BrN}_{4} \mathrm{O}_{3} \mathrm{Re} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C 46.99, H 4.73, N 7.31; found C 46.63, H 4.69, N 7.08.

Compound 14

A white solid, 75% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 500 \mathrm{MHz}\right), \delta: 1.00$ $(\mathrm{s}, 3 \mathrm{H}), 1.38-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, $1.65-1.93(\mathrm{~m}, ~ 10 \mathrm{H}), \quad 2.08-2.31(\mathrm{~m}, 6 \mathrm{H}), \quad 3.01-3.09(\mathrm{~m}, ~ 2 \mathrm{H})$, $3.62-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.85(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}$, $J=16.80 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.27(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~d}, \mathrm{~J}=16.80 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{dd}$, $J=17.49 \mathrm{~Hz}, 10.85,1 \mathrm{H}), 7.23(\mathrm{t}, J=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{t}, J=7.60 \mathrm{~Hz}$, $2 \mathrm{H}), 7.95(\mathrm{~d}, J=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 8.68(\mathrm{~d}, J=6.80 \mathrm{~Hz}, 2 \mathrm{H})$. IR (KBr) v : 1914, 2028, 2928, $3437 \mathrm{~cm}^{-1}$. Calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Re}\right] \mathrm{Br} \cdot 1 /$ $3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C 47.89, H $5.38, \mathrm{~N} 6.15$; found C $47.80, \mathrm{H} 5.45, \mathrm{~N} 6.11$.

Radiochemical synthesis of 15-17

Complexes 15-17 were prepared according to the following general procedure: ${ }^{17,20-22} \mathrm{fac}-\left[{ }^{188} \mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$was added to $100 \mu \mathrm{~L}$ or $\mathbf{1 0}$ or $\mathbf{1 1}\left(10^{-4} \mathrm{~mol} / \mathrm{L}\right)$. The mixture was incubated at $70^{\circ} \mathrm{C}$ for 50 min . HPLC analyses of the complexes $15-17$ revealed yields between 90 and 96%. Radioactive chemical purity with Re-188 (above 95\%) was obtained for all of the three derivatives

Conclusion

Three novel β-elemene Re complexes have been prepared and characterized successfully. Their antiproliferative activity in vitro on LLC and HeLa cell lines were increased significantly compared with that of the parent β-elemene by WST-1 methods. The radiolabelling of these three β-elemene Re free derivatives with fac- $\left[{ }^{188} \operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}$was straightforward and efficient. Their further biological evaluation for radioactive
target compounds in vivo is under way and will be reported in due course.

Acknowledgement

This project was supported by Hundred Talent Program of Chinese Academy of Sciences (No.26200601).

References

[1] Y. T. Gao, X. Y. Wu, Y. L. Chen, Bull. Chin. Mater. Med. 1983, 8, 31-33.
[2] G. Wang, X. Li, F. Huang, J. Zhao, H. Ding, C. Cunningham, J. E. Coad, D. C. Flynn, E. Reed, Q. Q. Li, Cell. Mol. Life Sci. 2005, 62, 881-893.
[3] X. Li, G. Wang, J. Zhao, H. Ding, C. Cunningham, F. Chen, D. C. Flynn, E. Reed, Q. Q. Li, Cell. Mol. Life Sci. 2005, 62, 894-904.
[4] K. Wang, Z. Li, Y. Chen, C. Su, Biopharm. Drug Dispos. 2005, 26, 301-305.
[5] L. Y. Xu, S. J. Tao, X. M. Wang, Z. Y. Yu, M. W. Wang, D. Chen, Y. K. Jing, J. H. Dong, Bioorg. Med. Chem. 2006, 14, 5351.
[6] R. Alberto, A. Egli, U. Abrum et al., J. Chem. Soc. Dalton Trans.1994, 19, 2815-2880.
[7] C. Muller, P. A. Schubiger, R. Schibli, Bioconjug. Chem. 2006, 17, 797-806.
[8] J. Y. Xia, Y. X. Wang, J. F. Yu, J. Radioanal. Nucl. Chem. 2005, 266, 313-316.
[9] M. Wenzel, M. J. Saidi, Labelled Compd. Radiopharm. 1993, 33, 77-80.
[10] S. Top, P. Morel, M. Pankowski, G. Jaouen, J. Chem. Soc. Dalton Trans. 1996, 12, 3611-3612.
[11] G. E. D. Mullen, P. J. Blowe et al., Inorg. Chem. 2000, 39, 4093-4098.
[12] E. Palma, B. L. Oliveira, F. Figueira et al., J. Labelled Compd. Radiopharm. 2007, 50, 13-14.
[13] R. Schibli, R. Alberto, J. Petrig et al., J. Labelled Compd. Radiopharm. 2001, 44(Suppl 1), S723-S725.
[14] R. Schibli, R. Schwarzbach, R. Alberto et al., Bioconjug. Chem. 2002, 13, 750-756.
[15] J. M. Worle-Knirsch, K. Pulskamp, H. F. Krug, Nano Lett. 2006, 6, 1261-1268.
[16] X. M. Wang, Y. J. Deng et al., J. Shenyang Pharm. Univ. 2005, 22, 289-290.
[17] H. P. Vanbilloen, K. Eraets, N. Evens et al., J. Labelled Compd. Raiopharm. 2005, 48, 1003-1011.
[18] N. Pillarsetty, S. Cai, L. Ageyeva, R. D. Finn, R. G. Blasberg, J. Med. Chem. 2006, 49, 5377-5381.
[19] J. F. Pons, J. L. Fauchere, F. Lamaty, A. Molla, R. Lazaro, Eur. J. Org. Chem. 1998, 5, 853-859.
[20] A. Stichelberger, R. Waibel, C. Dumas et al., Nucl. Med. Bio. 2003, 30, 465-470.
[21] H. J. Pietzsch, A. Gupta, M. Reisgys et al., Bioconjug. Chem. 2000, 11, 414-424.
[22] S. H. Park, H. J. Gwon, K. B. Park, J. Labelled Compd. Raiopharm. 2004, 47, 683-697.

[^0]: ${ }^{a}$ Research Center of Radiopharmaceuticals, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 BaoJia Road, Shanghai 201800, China
 ${ }^{b}$ Graduate School of the Chinese Academy of Sciences, 19 YuQuan Road, Beijing 100049, China
 *Correspondence to: Yumei Shen. Research Center of Radiopharmaceuticals, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 BaoJia Road, Shanghai 201800, China.
 E-mail: shenyumei@sinap.ac.cn

